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Abstract QSPR modeling of the stability constant log

K of the complexes of Zn2?, Cd2? and Hg2? with various

556 (Zn2?), 347 (Cd2?) and 76 (Hg2?) organic ligands in

water for the M2? ? L = (M2?)L equilibrium at 298 K

and an ionic strength 0.1 M was performed. Two machine-

learning methods were used: Multiple Linear Regression

Analysis (MLR) and Partial Robust M-regression Algo-

rithm (PRM). The PRM method was realized for consensus

modeling using substructural molecular fragments (SMF)

as descriptors. Using different types of SMF, ensembles of

individual predictive MLR and PRM models were prepared

to build consensus models (CM). The root mean squared

error of test set predictions of fivefold cross-validations is

1.8 and 1.9 (Zn2?), 1.9 and 2.2 (Cd2?), 2.7 and 2.8 (Hg2?)

for the MLR and PRM approaches correspondingly.

Experimental log K values vary in the range of 0.8–21.9

(Zn2?), 0.9–23.3 (Cd2?) and 1.6–29.7 (Hg2?). Extra vali-

dation of the models has been performed on a set of ligands

recently reported in the literature. The QSPR models are

sampled for the design of new binders of the Zn2?, Cd2?

Hg2? cations.

Keywords QSPR modeling of stability constants �
Design of metal binders � Complexes of Zn2?, Cd2?,

and Hg2? with organic ligands in water

Introduction

The interest in the coordination chemistry of zinc, cad-

mium and mercury is related not only to the widespread

industrial uses of their compounds, but also to their toxicity

and health effects [1]. Zinc is one of the most abundant

divalent metals in living organisms. It is an essential

cofactor of many metabolic enzymes and transcription

factors. Some biological metal binding sites are vulnerable

to attacks by nonbiogenic ‘‘alien’’ cations such as Cd and

Hg [2]. Cadmium compounds are regarded as carcinogenic

to humans [1]. The removal of toxic heavy metal con-

taminants is an environmental issue of great importance.

Therefore, great attention is addressed to the design and

synthesis of ligands able to bind specific metals [3]. For a

construction of ligands with specific behavior (e.g.,

changing of luminescence at the complexation [4–7]), it is

important to know ligand-binding properties to metal cat-

ions. The design of new metal binders represents an area of

current interest in supramolecular chemistry [6].

Chemoinformatics approaches open opportunities for

computer-aided design of new metal binders with desire

stability of their complexes and metal selectivity [8, 9].

The number of publications on QSPR modeling of stability

constants of metal–ligand complexes in solutions is

restricted by two tens of papers [8]. The works on QSPR

modeling of stability constants of cation-ligand complexes
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differ in a variety of classes and the number of analyzed

ligands, as well as a discrepancy between approaches to

test predictive models. The modeling of restricted classes

of ligands was carried out for the 1:1 (M:L) complexation

of Na? [10–14], K? [11–15], Cs? [11, 13, 14], Ca2? [10],

Zn2? [10], Gd3? [16], Cu2? and Ni2? [17] with crown

ethers [10–15], aza-crowns [16], phosphoryl-containing

podans [12, 14], cryptands [10] and spherands [10], cyclic

and acyclic aminocarboxylates [16], fructose-amino acids

[17] in water [16, 17], methanol [11–15], different pure and

mixed solvents [10], CDCl3 [10], THF:CHCl3 (4:1 vol.)

[12, 14]. More wide variety of the ligands presents the

studies of the 1:1 complexation of Ca2? [18–20], Mg2?,

Mn2?, Fe2?, Co2? [19, 21, 22], Ni2?, Cu2?, Zn2?, Cd2?

[19–22], Al3?, Pb2? [20], lanthanide cations [23] with

amino acids, adenosine and its phosphate derivatives, het-

erocyclic and aromatic rings [19, 21, 22], aminocarboxyl-

ates and aza-crown ethers [23] and the ligands containing

carboxylate, phenol, amine, ether, and alcohol functional

groups [20] in water. Predictive QSPR models have been

developed for the stability constants of the 1:1 [9, 24, 25]

and 1:2 [25] complexes of Sr2? [24], Ag? [25], Eu3? [25]

and 13 lanthanide cations [9] with quite diverse organic

molecules [9, 24, 25] in water at 298 K and an ionic

strength 0.1 M. The acyclic and macrocyclic, acidic, basic

and neutral organic molecules were studied. As a rule,

those organic molecules bear several electron-donor

groups. Some of carboxy, carbonyl, hydroxy, phosphono,

phosphinyl, amino, amido, sulfo, ether, mercapto, thioe-

ther, nitro, imidazolyl or pyridyl groups are included in

different combinations [9, 24, 25]. The number of the

ligands per metal varies from 130 (Sr2? [24]) to 308 (Gd3?

[9]) and exceeds the data sets of aforementioned separate

classes of the ligands. Predictive power of models is esti-

mated by calculations for test set(s) independent of training

data [8]. Often one [10–12, 14, 16, 19, 20] or 3–4 [13, 24]

test sets are utilized. In order to avoid any uncertainties

related to a selection of a particular test set, a more severe

n-fold cross-validation technique is recommended [8] and

used [9, 25]. For restricted classes of the ligands, standard

deviation and root mean squared error in the stability

constant log K values for validated data sets are similar to

experimental errors and vary from 0.2 to 0.3 [11–14] to

0.6–0.7 [13, 14, 19]. For diverse organic ligands, they vary

from 0.7 to 1.40 [10, 20, 24, 25] to 2.3–2.4 [9, 25]. A

combination of machine-learning methods and consensus

modeling [8] could be used to increase the reliability of

predictions for diverse ligands. From practical point of

view, it is important to have tools for an application of

developed QSPR models for the ligand design and stability

constant estimations. As a rule using available experi-

mental data on the stability constant, QSPR modeling

enable to predict the stability constant values of the

complexes of new ligands. In contrast to quantum chem-

istry and force-field simulations, chemoinformatics

approaches are much less pay attention to complex

geometry and the nature of the donor atoms and chemical

groups that interact with the metal cation. However, certain

descriptors of structure–property models such as topolog-

ical substructure fragments may shed light on binding sites

of the ligands.

In this paper, we report the QSPR consensus modeling

of the stability constant log K of the 1:1 (M:L) complexes

of metal cations Zn2?, Cd2? and Hg2? with diverse sets of

organic molecules in aqueous solution at 298 K and an

ionic strength 0.1 M via Multiple Linear Regression

(MLR) approach of the ISIDA program package and newly

realized Partial Robust M-regression (PRM) method. Using

different types of substructural molecular fragments of

molecular graphs of the ligands as descriptors, we build

hundreds of individual predictive MLR and PRM models to

prepare consensus models (CM). Predictive ability of the

CM models is analyzed using the fivefold external cross-

validation procedure and an extra test set of ligands

recently reported in the literature. The QSPR models are

sampled for the design of new metal binders with desired

complexation properties using the 2D sketcher EdChemS

interactively and the predictor COMET via Internet.

Methods

Descriptors

Substructural molecular fragments (SMF) of the ISIDA

program [12, 26] as subgraphs of molecular graph were

used as descriptors which are independent variables in the

QSPR models. A fragment occurrence is a descriptor value.

The descriptors were derived solely from 2D chemical

structures. Molecules were represented with implicit

hydrogen atoms. Two subclasses of the SMF descriptors

were utilized: shortest topological paths with explicit pre-

sentation of atoms and bonds (i), and terminal groups as

shortest path sequences defined by length and explicit

indication of beginning atom and bond and ending bond

and atom (ii). For searching the shortest paths, the Floyd

algorithm [27] was used. We distinguished single, double,

triple and aromatic bonds. Moreover, single, double and

triple bonds were considered different in acyclic and cyclic

non-aromatic parts of molecules. For each subclass of the

sequences, the minimal (nmin C 2) and maximal

(nmax B 15) numbers of constituent atoms are defined. The

values of nmin and nmax varied from 2 to 15 for MLR, and

from 2 to 4 (nmin) and from 6 to 15 (nmax) for PRM. The

notations IAB (nmin - nmax) and IAB(nmin - nmax)t rep-

resent types of two subclasses i and ii of the SMF
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descriptors, which include all intermediate shortest paths

with n atoms, for which nmin B n B nmax. Varying the

values of nmin and nmax, 210 types of the sequences of two

subclasses were prepared for the modeling. One type of the

SMF descriptors is used to build one (PRM) and two

(MLR) individual models. SMF of both subclasses were

used in the modeling by MLR, and shortest path sequences

i were merely applied in the PRM modeling.

Data sets

Experimental stability constant values (log K) for the 1:1

(M:L) complexes of Zn2?, Cd2? and Hg2? cations with

divers organic ligands in water were critically selected

from IUPAC Stability Constants Database (SC DB) [28]

(version 5.33, Academic Software) at standard temperature

298 K and an ionic strength I = 0.1 M. Some of the log

K values were corrected to specified temperature and ionic

strength using the procedures included in SC DB.

2D structures of the ligands, names of the metal ions as

well as corresponding experimental log K values were

converted by the EdiSDF data manager [24, 26, 29] into

Structure Data Files (SDF) readable by the MLR and PRM

programs of the ISIDA package [30, 31]. If several values of

the stability constant log K were available for a particular

ligand, for selections we followed the recommendations of

IUPAC [32]; in some cases the most recent data or the data

consistent with respect to different experimental methods

were chosen. At the pretreatment stage of the modeling,

some specific ligands were excluded if for the SMF type with

nmin = 2 and nmax = 6, they bring fragments occurred less

than in 3 ligands for given metal cation. Finally, 556 (Zn2?),

347 (Cd2?) and 76 (Hg2?) organic ligands were involved in

the QSPR modeling. Distributions of the experimental val-

ues log K in the data sets are given in Fig. 1. For the studied

complexes, the values log K vary in the range of 0.8–21.9

(Zn2?), 0.9–23.3 (Cd2?) and 1.6–29.7 (Hg2?).

The names of the ligands and the stability constant

values are presented as supporting information in Tables

SM1–SM3. Large majority of the organic ligands can be

classified on acyclic and macrocyclic, acidic, basic and

neutral compounds. As a rule, the organic ligand bears

several electron-donor groups. Some of the carboxy, car-

bonyl, hydroxy, phosphono, phosphinyl, amino, amido,

sulfo, ether, mercapto, thioether, nitro, imidazolyl or pyr-

idyl groups can be included in different combinations. The

sets of the ligands include amino and hydroxy derivatives

of carboxylic acids; different aminoacids and their oligo-

mers, alkylated derivates of phosphoric acid; alkyl- and

aminophosphonic acids; acyclic polydentate ligands with

the terminal carboxy groups separated by various cyclic or

acyclic spacers; derivatives of diphosphonic acids; ternary

amines with phosphono and carboxy groups; mono- and

dipodands of ternary amines; amino derivatives of phenols;

crown-ethers, thia-, and aza-crown-ethers with neutral and

acidic lariat groups, cryptands, etc. (see supporting infor-

mation: Tables SM1–SM3).
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Fig. 1 Distribution of experimental values of the stability constant

(log K) for the 1:1 (M:L) complexes of organic ligands with Zn2?,

Cd2? and Hg2? in water at temperature 298 K and an ionic strength

0.1 M
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Machine learning methods

To estimate an ability of a model to predict reliably mod-

eling property, the fivefold cross validation was used [25,

33]. In this procedure, an entire dataset is divided in 5 non-

overlapping pairs of training and test sets. Each training set

covers 4/5th of the dataset while the related test set covers

the remaining 1/5th. Predictions are prepared for all mole-

cules of the initial dataset, since each of them belongs to one

of the test sets. As criterions of robustness of models,

squared coefficient of determination (R0
2), root mean

squared error (RMSE) and mean absolute error (MAE) for

training (Y = Ycalc) and test (Y = Ypred) sets are used

R2
0 ¼ 1� R Yexp � Y

� �2
=R Yexp � hYiexp

� �2

;

RMSE ¼ R Yexp � Y
� �2

=n
� �1=2

and

MAE ¼ R Yexp � Y
�� ��=n;

where Ycalc, Ypred and Yexp are calculated, predicted and

experimental values of the stability constant correspond-

ingly and Y = log K.

For the predictions of the properties, we used consensus

models (CM). CM combines the predictions issued from

many individual models originated from different types of

the SMF descriptors. CM allows one to smooth inaccura-

cies of individual models and ensures more reliable pre-

dictions [14, 24, 31, 33]. Thus for each compound from the

test set, the program computes the property as an arithmetic

mean of values obtained with a collection of selected on

training stage individual models excluding those leading to

outlying values according to Tompson’s rule and a method

of ranked series [34], and taking into account an applica-

bility domain (AD) of each model. We used the collections

of best individual models for which leave one out (LOO)

cross-validation correlation coefficient Q2 [ Qlim
2 (MLR)

or determination coefficient R0
2 [ R0

2, lim (PRM) for the

models. Here Qlim
2 and R0

2, lim are user defined thresholds.

When applying an individual model for CM, the pro-

gram checks its AD [9, 29] which measures a similarity

between a test compound and the compounds from the

training set. If the test compound is identified as being

outside AD, the prediction by given model is not included

for a preparation of CM. We took into account two AD

approaches conjointly: bounding box considering as AD a

multi-dimension descriptor space confined by minimal and

maximal values of counts of SMF descriptors involved in

individual model, and fragment control rejecting a pre-

diction for the test compound containing unknown SMF

fragment, which is non-existent in the initial SMF pool for

given model preparation. Prediction calculations were

made both with AD by the PRM and MLR methods and

without AD by the PRM method also.

The ISIDA (In SIlico design and Data Analysis)

program package [29–31] (http://infochim.u-strasbg.fr/

recherche/Download/Download.php) has been used for

structure–property modeling, which was performed using

two machine learning methods: Multiple Linear Regression

Analysis (MLR) [12] and Partial Robust M-regression

Algorithm (PRM).

Multiple Linear Regression Analysis (MLR)

The SMF descriptors are independent variables used to

build multi-linear correlation equations Y = a0 ? RaiXi,

where Y is modeling property, Xi is the count of the ith

SMF, ai is its contribution, and a0 is the descriptor inde-

pendent term. For each SMF type, two types of the equa-

tions were prepared: including the a0 term or without it.

Using the training set, the coefficients a0 and ai have been

fitted by the Singular Value Decomposition method [35].

The robust models were selected at the training stage

according to LOO cross-validation correlation coefficient

Q2 [ Qlim
2 , where Qlim

2 is a user defined threshold. In this

work, we used Qlim
2 = 0.5 for the studied metal cations.

For the MLR method, forward and backward stepwise

techniques [14, 33, 36] have been utilized for selections of

pertinent variables X from initial pools of the SMF

descriptors. In the beginning, original Variable Selection

Suite (VSS) program eliminates variables Xi which have

small correlation coefficient with the property

(jRY,ij\ RY,i
0 ) or those highly correlated with other vari-

ables Xj (jRi,jj[ Ri,j
0 ), which were already selected for the

model [33, 36]. In this work, the boundary values

RY,i
0 = 0.001 and Ri,j

0 = 0.99 were used. Concatenated

fragments always occurring in the same combination in

each compound of the training set are interpreted as one

extended fragment. Infrequent fragments (i.e., found in less

than m molecules, here m \ 2) were excluded. Then, for-

ward stepwise iterative procedure on each step selects two

variables Xi and Xj giving maximal correlation coefficient

(RY,ij = (RY,i
2 ? RY,j

2 - 2RY,iRY,jRij)/(1 - R2ij)) with a

residual of the property Y(p). At each step p, fitted residual

is Y(p) = Y(p-1) - Ycalc, where Y(0) = Yexp for the first step

(p = 1) and Ycalc = c0 ? ciXi ? cjXj is calculated function

for corresponding Y(p-1) by the two-variable model with

selected variables Xi and Xj. This loop is repeated until the

number k of variables reaches a user-defined value [33, 36];

in this work, k = 0.6 N, where N is the number of data

points (here ligands) in the training set. The final backward

stepwise variable selection is based on using of the Stu-

dent’s t-criterion [14]. The program eliminates the vari-

ables with low ti = ai/Dai values, where Dai is standard

deviation for the coefficient ai at the ith variable in the

MLR model. First, the program selects the variable with

the minimal ti,min \ t0, then it builds a new model
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excluding that variable. This procedure is repeated until

t C t0 for all remaining variables. Here the tabulated value

t0 = 1.96 of Student’s criterion was employed.

Partial Robust M-regression (PRM)

The implemented in the ISIDA software PRM method was

realized for consensus modeling to combine predictions

issued from many individual models using SMF as

descriptors. PRM is a modification of the widely used

Partial Least Squares (PLS) statistical tool. PRM outper-

forms some another methods for robust PLS regression in

terms of statistical precision, computational speed and

robustness with respect to outliers [37]. It is important for

the SMF descriptor application in the QSPR modeling

since the method empowers to solve a problem of

descriptor multicollinearity and to keep descriptor pool

completeness in a model when the number of variables

exceeds substantially the number of observations. The

underlying idea is that PLS summarizes the often high-

dimensional independent variables (the SMF descriptors in

our case) into a smaller set of uncorrelated, so-called latent

variables (h), which have a maximal covariance to the

modeling property. PRM gives a protection against both

vertical outliers and leverage points [37]. Vertical outliers

are outliers in the error terms. The leverage points are

observations in the descriptor space far away from the big

majority of the data. In our case, the number of descriptors

p (independent variables) is essentially large compared to

the number of the observations n (data points). According

to [37], computations are sped up by carrying out pre-

liminary singular value decomposition (SVD) on the data

matrix p 9 n then applying the PRM iteration scheme on

the reduced data matrix having size n 9 n.

The program realized partial robust M-regression algo-

rithm has been designed using Object Pascal and DELPHI

programming platform for WINDOWS (Fig. 2). For

molecular structures and property input, we use the SDF

format. User can select a collection of the SMF descriptor

types and the range of the numbers of the latent variables

h to build hundreds of individual models for a preparation

of the consensus model. One can select applicability

domain method(s). We carried out the calculations with

involving of the AD methods and without their use. The

robust models can be selected according to thresholds of

LOO cross-validation correlation coefficient Q2 [ Qlim
2 or/

and determination coefficient R0
2 [ R0

2, lim. Here Qlim
2 and

R0
2, lim are user defined thresholds. In this work, we used

R0
2 [ R0

2, lim = 0.9.

Results and Discussion

QSPR consensus modeling of the stability constant log

K was performed for the complexation M2? ? L =

(M2?)L of Zn2?, Cd2? and Hg2? with 556 (Zn2?), 347

(Cd2?) and 76 (Hg2?) structurally diverse organic ligands

in water at 298 K and an ionic strength 0.1 M. The MLR

Fig. 2 Graphical interface for

the partial robust M-regression

program showing consensus

modeling
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and PRM machine learning methods were used. Altogether

for each metal cation, 2,100 (MLR) and 2,250 (PRM)

individual models have been built. The number of latent

variables in the PRM models was varied from 15 to 29. For

the preparation of the consensus models, collections of

robust individual models were selected, for which LOO

cross-validation correlation coefficient Q2 [ 0.5 (MLR) or

determination coefficient R0
2 [ 0.9 (PRM). The collections

contain 210–240 (Zn2?), 260–310 (Cd2?) and 240–260

(Hg2?) MLR models and 300–340 (Zn2?), 320–380

(Cd2?), 400–450 (Hg2?) PRM models for the training sets

of the fivefold cross-validations.

The determination coefficient R0
2, root mean squared

error RMSE and mean absolute error MAE obtained

between experimental and predicted stability constant

values log K have been considered as criterions of the

robustness of the MLR and PRM consensus models. The

predicted data represent the combinations of the external

test sets of the fivefold cross-validation procedure. RMSE

of the test set predictions is 1.8 and 1.9 (Zn2?), 1.9 and 2.2

(Cd2?), 2.7 and 2.8 (Hg2?), MAE is 1.4 and 1.4 (Zn2?), 1.4

and 1.6 (Cd2?), 2.0 and 2.2 (Hg2?) log K units for the MLR

and PRM approaches correspondingly (Fig. 3). The

squared determination coefficient R0
2 of the predictions

varies from 0.81 to 0.86 for both methods and three metal

cations. The consensus models demonstrate reasonable

predictive ability for Zn2? and Cd2?. The modeling on the

relative small data set for Hg2? led to larger RMSE and
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Fig. 3 Predicted versus experimental values of the stability constant

(log K) for the 1:1 (M:L) complexation of organic ligands with Zn2?

(a, b), Cd2? (c, d) and Hg2? (e, f) in water at temperature 298 K and

ionic strength 0.1 M. Results were obtained using the ISIDA/MLR (a,

c, e) and ISIDA/PRM (b, d, f) consensus models. The predicted data

represent a combination of all five external test sets of the fivefold

cross-validation procedure
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MAE values compared to the Zn2? and Cd2? data sets. The

ISIDA/MLR technique demonstrates slightly better per-

formance over PRM. The prediction calculations (Fig. 3)

were carried out using the applicability domain (AD)

approaches for the MLR method and without AD for PRM.

Using of the AD option for the PRM validation calcula-

tions demonstrates smallest RMSE of the test set predic-

tions: 1.7 (Zn2?), 1.9 (Cd2?) and 2.3 (Hg2?), however in

this case, predicted log K values are rejected by the AD

methods for 23% (Zn2?), 16% (Cd2?) and 26% (Hg2?) of

the studied ligands. The Regression Error Curves demon-

strate (Fig. 4) that for Zn2? and Cd2? absolute prediction

error is below 1.0 for 50% of the ligands. This error jlog

Kexp - log Kpredj & 1 is appropriate to the discrepancy in

experimental log K values measured by different methods

[28]. For diverse organic ligands and severe fivefold cross-

validation technique, RMSE of the predictions is similar

(Hg2?) or lower (Zn2?, Cd2?) than corresponding RMSE

for the complexation of lanthanide cations [9, 25].
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model’’: arithmetic mean of experimental constant log Kexp of all

ligands is as the predicted value for any ligand

Table 1 The SMF types and statistical parameters of best MLR

models according to five training sets of the fivefold cross validation

procedure

No. SMF typea n m s Q2

Zn2?

1 IAB(2–10) 444–445 97–121 0.9–1.1 0.901–0.932

2 IAB(3–10) 444–445 97–119 0.9–1.1 0.912–0.930

3 IAB(2–15)t 444–445 74–98 1.0–1.3 0.901–0.939

Cd2?

4 IAB(3–15) 277–278 81–97 0.6–0.9 0.896–0.953

5 IAB(3–13) 277–278 67–97 0.7–1.1 0.899–0.956

6 IAB(2–15) 277–278 81–97 0.6–0.9 0.901–0.952

7 IAB(2–12) 277–278 56–93 0.7–1.3 0.900–0.940

Hg2?

8 IAB(3–10) 61 21–27 0.9–1.1 0.966–0.969

9 IAB(4–13)t 59–60 21–25 0.9–1.1 0.950–0.961

Statistical parameters of the MLR models: the number data point in

training set (n), the number of SMF variables (m), standard deviation

(s), squared LOO cross-validation correlation coefficient (Q2)
a SMF type: see the notation in ‘‘Methods’’ section: descriptors

Table 2 The SMF types and statistical parameters of best PRM

models according to five training sets of the fivefold cross validation

procedure

no. SMF type n M h s R0
2

Zn2?

1 IAB(2–15) 444–445 3,121–3,499 26–29 0.7–1.0 0.961–0.976

2 IAB(3–14) 445 2,966–3,259 26–29 0.8–0.9 0.965–0.973

3 IAB(3–15) 444–445 3,101–3,478 26–29 0.8–0.9 0.965–0.973

Cd2?

4 IAB(2–11) 277–278 1,215–1,312 27–29 0.7–0.9 0.969–0.978

5 IAB(3–14) 277–278 1,352–1,510 26–29 0.7–0.9 0.968–0.977

6 IAB(3–11) 277–278 1,200–1,297 26–29 0.7–1.0 0.964–0.977

Hg2?

7 IAB(2–9) 60–61 291–314 24–29 0.6–1.0 0.976–0.992

8 IAB(2–8) 60–61 249–275 20–29 0.9–1.2 0.972–0.991

9 IAB(2–15) 61 355–414 24–29 0.7–1.1 0.974–0.990

See the footnotes in Table 1; h is the number of latent variables, R0
2 is squared

coefficient of determination
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Table 3 Experimental and predicted stability constant values log K for extra test set

No. Ligand Cation log K

exp. pred. MLRa pred. PRMb

1

N
H

O

N
H

S

Zn2? 5.10c 6.4 (1.5) 6.06 (0.10)

Cd2? 8.10c 6.80 (0.74) 6.84 (0.54)

Hg2? 10.1c 12.04 (0.35) 10.87 (0.57)

2

NH

S

O

S Cd2? 7.90d 4.2 (1.3) 4.96 (0.46)

Hg2? 8.65d 8.6 (2.0) 8.57 (0.56)

3

NH

S

S

S Cd2? 5.8c 3.3 (1.1) 6.23 (0.88)

4

N

S

O

S

NH2

Zn2? 8.95c 4.78 (0.93) 7.33 (0.42)

Cd2? 8.08c 5.2 (1.4) 7.22 (0.22)

Hg2? 9.62c 10.2 (2.3) 10.10 (0.86)

5

N

S

S

S

NH2

Zn2? 8.14c 5.30 (0.95) 7.74 (0.41)

Cd2? 8.20c 4.77 (0.82) 7.89 (0.48)

Hg2? 10.88c 10.2 (2.3) 8.65 (0.90)

6

N

O

N

S

NH2

NH2

Zn2? 7.5c 9.9 (1.3) 12.84 (0.19)

Cd2? 9.0c 8.1 (1.2) 11.6 (1.1)

Hg2? 11.8c 15.3 (3.5) 15.5 (1.8)

7

N

S

S

O

O
NH2

Zn2? 5.4c 4.18 (0.82) 7.49 (0.17)

Hg2? 7.8c 10.2 (2.2) 11.73 (0.41)

8

N
N
H

N
NH

N
H

Zn2? 16.15e 13.9 (1.7) 16.06 (0.70)

Cd2? 17.20e 9.75 (0.51) 16.93 (0.72)

9

N
N
H

N

N

N
HNH2

Zn2? 17.9e 13.12 (0.92) 16.93 (0.99)

Cd2? 18.83e 10.7 (2.2) 16.71 (0.90)

Hg2? 30.28e 24.6 28.8 (1.0)

10

NH

S

N

S

Zn2? 7.13f 5.77 (0.98) 6.74 (0.29)

Cd2? 9.12f 8.12 (0.38) 6.76 (0.70)

Hg2? 10.68f 12.9 8.3 (1.3)

11

N

S

N

S

NH2

Zn2? 8.5f 7.08 (0.80) 10.24 (1.8)

Cd2? 10.3f 7.1 (1.3) 8.79 (0.42)

Hg2? 13.1f 15.5 10.6 (2.0)

12

N
H

NH

S

NH

Zn2? 9.58d 10.02 (0.42) 11.77 (0.14)

Cd2? 9.91d 10.27 (0.15) 10.33 (0.51)
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Among the SMF types applied, few of them enabled to

build the models with best statistical parameters for most,

if not for all training sets of the fivefold cross validation

(Tables 1 and 2). Such results were obtained for the

IAB(2–10) (Zn2?) and IAB(3–10) (Zn2?, Hg2?),

IAB(3–15) and IAB(3–13) (Cd2?) fragment types using the

MLR method. Squared LOO cross-validation correlation

coefficient of these models is reasonable: Q2 = 0.90–0.97

(Table 1). Notable PRM results are obtained with the

IAB(2–15) (Zn2?), IAB(3–14) (Zn2?, Cd2?), IAB(2–11)

(Cd2?) and IAB(2–9) (Hg2?) fragments (Table 2). The

models are characterized by remarkable values of squared

coefficient of determination R0
2 = 0.96–0.99, and the

number of variables 2,966–3,499 (Zn2?), 1,200–1,510

(Cd2?) and 249–414 (Hg2?) is ten times more than in the

best MLR models. The standard deviation of these models

(s = 0.6–1.2) is very similar to the one of MLRs (Tables 1

and 2).

The MLR and PRM consensus models were applied to

the prediction of the stability constant values log K and

their standard deviations for an extra test set of the com-

plexes of Zn2?, Cd2? and Hg2? ions with 15 recent syn-

thesized organic ligands. The predictions were performed

for the comparison with 33 experimental log K values [5, 6,

38–42] which were not presented in the sets used for the

modeling. Mainly, the ligands are 12- and 15-membered

macrocycles with the N, O and S donor atoms (Table 3).

The predicted log Kpred values demonstrate accordance

with the experimental log Kexp data: R0
2 = 0.823 and

RMSE = 2.2 for PRM and R0
2 = 0.629 and RMSE = 3.2

for MLR correspondingly (Table 3). For the extra test set,

the PRM technique demonstrates better performance

over MLR due to relatively poor MLR assessments for

Cd2? and 2,5,8-triaza-[9]-10,23-phenanthrolinophane and

5-aminoethyl-2,5,8-triaza-[9]-10,23-phenanthrolinophane

ligands (no. 8 and 9 in Table 3). Figure 5 illustrates

Table 3 continued

No. Ligand Cation log K

exp. pred. MLRa pred. PRMb

13

NN

N N

O

P

OH
P

OH

OH

OH

OH

O
O

OH O Zn2? 22.5g 22.2 (1.5) 23.42 (0.72)

14

N

O

O

N
O

OH

OH

O

O

OH

OH
O

Zn2? 13.27h 18.0 (2.6) 18.96 (0.65)

15

N
H

N

N
H

N

N

Zn2? 13.01i 12.6 (1.1) 12.6 (1.0)

R0
2 0.629 0.823

RMSE 3.2 2.2

Experimental data are given at 298 K and ionic strength 0.1 M excepting ligand 13, for which ionic strength is 0.15 M
a, b Predicted stability constant values log Kpred are computed using the consensus models of the MLR and PRM methods and standard deviations

are given in parentheses
c Reference [5]
d Reference [38]
e Reference [39]
f Reference [6]
g Reference [40]
h Reference [41]
i Reference [42]
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ensemble modeling: the stability constant values were

calculated as arithmetic mean of the predictions by means

MLR and PRM CM. The predictions are characterized by

reasonable values of R0
2 = 0.800 and RMSE = 2.3.

The individual MLR and PRM models can be inter-

preted, taking into account values and sign of fragment

contributions. For instance, the stability constant log K of

the mercury complexes can be calculated using 14 frag-

ment descriptors in one MLR model (Fig. 6). Some of

fragments bring high positive (N–C–C–N in chain, Car–

Car–Nar–Car in aromatic cycle) or negative (C–C–N–C–C

in non-aromatic cycle) contributions into log K, whereas

others (C–C–N–C–C–O–C–C in non-aromatic cycle) are

less important (Fig. 6). The SMF contributions can be

recalculated to contributions of usual chemical groups [24,

31, 43] or individual atoms which are easily interpretable.

Thus, relative contributions in log K for heteroatoms in

macrocyclic moieties for ligands 6 and 12 (Table 3)

decrease in the order N [ O [ S. This is in agreement with

experimentally observed trends in the stability constants

for the (Zn2?)L complexes when the oxygen atom is

replaced with the sulfur atom (see the ligands 2 and 3,

Table 3) or with the nitrogen atom (see the ligands 1 and

12, Table 3). For the molecule 6, the contribution of the N

atom in the side chain is found smaller than that for the N

atom of the macrocycle which allows us to suggest the

larger role of the macrocyclic moiety in the complex

formation.

Various numbers of different fragments characterize the

individual MLR models. The analysis of the fragment

contributions of the models in a fragment library shows

that these portions are about constant or vary in enough

narrow limits. For example, shortest topological paths

S–C–C–C = O (Zn2?), S–C–C–N (Cd2?) and O–C–C–C–

C–O (Hg2?) in chain parts of the ligands contribute 4.6, 6.0

and 5.1 log K units into the stability constant according to

32, 49 and 27 models correspondingly (Table 4 and sup-

plementary illustrations there). The fragments and their

contributions are convenient tools for the rationale design

of the ligands with desirable thermodynamic stability of

6 12 18 24 30

6

12

18

24

logKpred = 1.16 + 0.86logKexp

n = 33, R2 = 0.810,  
s = 2.2 

R0
2 = 0.800 

RMSE = 2.33 
MAE = 1.81 

lo
gK

pr
ed

logKexp

Fig. 5 Ensemble modeling by means the MLR and PRM consensus

models: arithmetic mean predicted versus experimental values of the

stability constant log K for extra test set in Table 3
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Fig. 6 QSPR modeling of the stability constant log K of the Hg2?

complexes with diverse organic ligands in water at 298 K and an

ionic strength 0.1 M: molecular fragment contributions (ai) in the

MLR model log K = Rai Ni, where Ni is an occurrence of the ith
fragment. The SMF type is IAB (3–10); bond notation: ‘–’ single in

chain, ‘.’ single in non-aromatic cycle, ‘=’ double in chain, ‘*’

aromatic

Table 4 Selected molecular fragments and their mean contributions

into log K according to sets of individual MLR models

No. SMFa \ai[ Nmodel Nmol

Zn2? ? L, 556 Ligands

1 S–C–C–C=O 4.59 (0.59) 32 14

2 O=[5]-S 3.08 (0.35) 58 14

3 N.[5].N 2.7 (1.0) 41 66

Cd2? ? L, 347 Ligands

4 S–C–C–O 5.7 (1.4) 63 10

5 S–C–C–N 5.96 (0.63) 49 14

6 N-[4]-S 2.41 (0.74) 57 14

Hg2? ? L, 76 Ligands

7 O–C–C–C–C–O 5.1 (2.4) 27 10

8 N-[7]-N 4.9 (1.7) 32 4

9 N-[4]-N 5.3 (1.8) 30 34

\ai[ is fragment contribution (arithmetic mean) and its standard

deviation (in parentheses) according to Nmodel models and Nmol

ligands
a substructural molecular fragments (SMF): S–C–C–C=O, S–C–C–O,

S–C–C–N and O–C–C–C–C–O are shortest topological paths with

explicit presentation of atoms and bonds and O=[5]-S, N.[5].N, N-[4]-

S, N-[7]-N and N-[4]-N are terminal groups as shortest path

sequences defined by length (in square brackets) and explicit indi-

cation of beginning atom and bond and ending bond and atom; bonds:

‘–’ and ‘=‘are single and double in chain, ‘.’ is single in non-aromatic

cycle

318 J Incl Phenom Macrocycl Chem (2012) 72:309–321

123



their complexes. For this aim, the ‘‘Forecast by Molecular

Fragments’’ (FMF) program was developed. FMF interacts

with the 2D sketcher EdChemS [24, 26, 44] (http://info

chim.u-strasbg.fr/recherche/Download/Download.php)

(Fig. 7). If molecular structure is edited on the screen by

EdChemS, FMF predicts the property interactively using

loaded CM or selected individual model(s). For structure

modifications, one can use own ideas and the library of

fragments and their contributions. To demonstrate this

option, 15 virtual ligands were designed for which the

stability constant log K on Zn2? varies from 1 to 15 with

the step about 1 (Table 5). MLR and PRM CMs and the

AD methods were applied.

Recently, the COMET (COmplexation of METals)

predictor was developed [9] to apply the QSPR models for

the predictions of the stability constants of the complexes

of metal cations with organic ligands in solutions by means

of Internet (http://infochim.ustrasbg.fr/cgi-bin/predictor.cgi

). The COMET predictor contains the models for the

complexation of alkaline-earth and lanthanide cations in

water [9]. At present, the best models for the complexation

of Zn2?, Cd2? and Hg2? obtained by the MLR and PRM

methods are included in the COMET predictor. The models

can be applied either individually or altogether to form the

consensus model as an arithmetic mean over all individual

models taking into account the applicability domain

methods. It enables to design theoretically new organic

ligands, thus providing experimentalists with structures of

new potential metal binders.

Conclusions

A comparative study of Multiple Linear Regression Anal-

ysis of the ISIDA program package and newly realized

Partial Robust M-regression has been performed for QSPR

consensus modeling of the stability constant log K of the

1:1 (M:L) complexes of metal cations Zn2?, Cd2? and

Fig. 7 Interactive design of chemical structure with desirable prop-

erty value using the 2D sketcher EdChemS and the ‘‘Forecast by

Molecular Fragments’’ (FMF) module (http://infochim.u-strasbg.fr/

recherche/Download/Download.php)

Table 5 Designed virtual ligands for which the stability constant log

K value on Zn2? varies from 1 to 15 with the step about 1

No. Ligand log

Kpred

s Nm

1 OH
OH

O

1.2 0.3 337

2 NH2 S

CH3

2.1 0.5 362

3 O

OHOH

O

OH

2.9 0.5 355

4

O

OH

N
CH3

CH3
4.3 0.4 305

5

N
O

OHCH3

CH3

5.1 0.5 391

6

N
N

CH3

CH3

CH3

CH3

6.0 0.3 314

7

O

OHNH2

N
CH3 CH3

7.0 0.4 374

8

N
O

OHCH3

N
H

CH3

8.0 0.6 399

9

N

N

N

N
CH3

CH3 CH3

CH3
9.2 0.5 389

10

N
H

O

OH

N

O

OH

CH3

9.9 0.6 388

11

N
H

N
H

NH2

N
H

NH2

11.3 0.4 305

12

NH

N

N
H

NH2

NH2

CH3

12.2 0.8 444

13

OH

NN

O

OH

OOH

O

OH

O

CH3

13.1 0.5 347
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Hg2? with the diverse sets of organic molecules in water at

298 K and an ionic strength 0.1 M. Two subclasses of the

SMF descriptors were utilized: shortest topological paths

with explicit presentation of atoms and bonds, and terminal

groups as shortest path sequences defined by length and

explicit indication of beginning atom and bond and ending

bond and atom. The variation of the minimal and maximal

numbers of constituent atoms in the sequences gives a

multitude of the SMF types to build collections of

numerous robust individual models for the preparation of

the consensus models. Predictive performance of the con-

sensus models was assessed using the fivefold external

cross-validation procedure. Consensus MLR and PRM

modeling with using the SMF descriptors represents a

reliable tool for the prediction of the stability constants of

the complexes of metal ions with organic ligands in water.

The QSPR models are sampled for the design of new

ligands with desired complexation properties. For this aim,

the 2D sketcher EdChemS and the predictor FMF inter-

actively or the predictor COMET via Internet can be

applied. To demonstrate these options, 15 virtual ligands

were designed for which the stability constant log K on

Zn2? varies from 1 to 15 with the step about 1.
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